Bayesian Numerical Homogenization

Houman Owhadi, Caltech
September 10th, 2014 at 3:30PM–4:30PM in 939 Evans Hall [Map]

Numerical homogenization, i.e. the finite-dimensional approximation of solution spaces of PDEs with arbitrary rough coefficients, requires the identification of accurate basis elements. These basis elements are oftentimes found after a laborious process of scientific investigation and plain guesswork. Can this identification problem be facilitated? Is there a general recipe/decision framework for guiding the design of basis elements? We suggest that the answer to the above questions could be positive based on the reformulation of numerical homogenization as a Bayesian Inference problem in which a given PDE with rough coefficients (or multi-scale operator) is excited with noise (random right hand side/source term) and one tries to estimate the value of the solution at a given point based on a finite number of observations. We apply this reformulation to the identification of bases for the numerical homogenization of arbitrary integro-differential equations and show that these bases have optimal recovery properties. In particular we show how Rough Polyharmonic Splines can be re-discovered as the optimal solution of a Gaussian filtering problem.